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It is usual to state, since Ewald [Ann. Phys. (1917), 54, 519–597], that Bragg-case

Pendellösung involves two wavefields belonging to the same branch of the

dispersion surface. However, in the Bragg geometry or when crystals are highly

absorbing, the dispersion surface can no longer be approximated by the

dispersion surface valid for a non-absorbing infinite medium. When considering

the real part of the dispersion surface, it is found that the interfering wavefields

producing Pendellösung in the Bragg geometry belong in fact to different

branches. This paradox is explained by noting that the actual dispersion surface

in the semi-infinite medium where the wavefields are generated by the incident

wave differs from the dispersion surface in an infinite medium.

1. Introduction

In the two-beam approximation, two solutions of the dispersion

equation are excited by an incident plane wave. Their interference

was called Pendellösung by Ewald (1917) in both Laue and Bragg

geometry. He noted that in the latter case the two corresponding

wavefields are attached to the same branch of the dispersion surface.

However, if one plots the real part of the dispersion surface, one finds

that these wavefields belong to different branches. The purpose of

this note is to discuss this paradox and to provide some reflections on

the concept of dispersion surface. This requires revisiting very briefly

the bases of dynamical theory.

2. The dispersion equation

The notion of wavefield was introduced by Ewald (1913) in order to

describe the optical field in an infinite triply periodic medium 15 years

before Bloch (1928). A wavefield is an infinite sum of plane waves of

wavevectors Ko ¼ OP, Kh ¼ HP, Kg ¼ GP etc., which are deduced

from one another by translations of the reciprocal-lattice vectors

Kh ¼ Ko � h; Kg ¼ Ko � g etc:;

where h ¼ OH, g ¼ OG etc. are reciprocal-lattice vectors. The

common extremity of the wavevectors, P, is called the tiepoint (Fig. 1).

This relation shows that, in an absorbing medium, all the wavevectors

of a given wavefield have the same imaginary part and therefore

undergo the same absorption. The propagation equation of a wave in

an infinite triply periodic medium is equivalent to a infinite set of

linear equations (Laue’s Grundgleichungen), the determinant of

which is the dispersion equation (Dispersionsgleichung, Ewald, 1917).

It relates the wavevectors of the wavefield and their frequency. In the

two-beam approximation to which we shall limit this note, namely

when there is only one couple of wavevectors such that 2Ko � h � h2

(Bragg relation), each wavefield is constituted by two waves only and

the dispersion equation is of the form

XoXh ¼
k2

4
C2�h� �hh; ð1Þ

where k ¼ 1=� is the wavenumber of the radiation propagating in the

medium, C ¼ 1 or cos 2� is the polarization factor, �h and � �hh the

Fourier coefficients of the dielectric susceptibility (or polarizability)

for the h; k; l and �hh; �kk; �ll reflections, respectively, and Xo and Xh are

quantities related to Ko and Kh, respectively. The dispersion equation

determines which wavefields may propagate in the infinite medium

and the locus of their tiepoints; this is the dispersion surface

(Dispersionsfläche, Ewald, 1917). The direction of propagation of a

wavefield is given by the Poynting vector, S ¼ ReðE ^H�Þ (Laue,

1952), where Reð Þ means real part of ( ). The slope, p, of this

propagation direction with respect to the lattice planes is

p ¼
tan�

tan �
¼

1� j�j2

1þ j�j2
; ð2Þ

Figure 1
Dispersion surface in an infinite medium (two-beam approximation). To, Th

tangents to the spheres of radii nk and centred at O and H, respectively (k ¼ 1=�
wavenumber, n index of refraction, O origin of the reciprocal lattice, H node hkl of
the reciprocal lattice); S Poynting vector of the wavefield of tiepoint P; � angle
between S and the lattice planes; � Bragg angle.



where � is the angle between S and the lattice planes (Fig. 1), � the

Bragg angle and � the ratio between the amplitudes of the two waves

constituting the wavefield,

� ¼ Dh=Do ¼ 2Xo=kC��hh ¼ kC�h=2Xh:

3. The dispersion surface in an infinite medium

In general, if the Bragg angle is neither very small nor close to �=2,

the quantities Xo and Xh can be approximated by the coordinates of

the tiepoint with respect to the asymptotes, To and Th, to the spheres

of radius nk (n, index of refraction), centred at the reciprocal-lattice

points O and H (Fig. 1).

If the medium is non-absorbing, the dispersion surface is real and

its intersection with the Ko, Kh plane is a hyperbola; it has two

branches, called 1 and 2 by Ewald (1917). The only wavefields that

may propagate in the infinite medium are those whose tiepoints lie on

the dispersion surface. Those whose tiepoints lie between the two

branches are forbidden; this is the Bragg gap, which corresponds to

the band gap in the energy diagram. The direction of propagation of

the wavefields has been shown by Kato (1958) and by Ewald (1958)

using the group velocity to be along the normal to the dispersion

surface.

If the medium is absorbing, �h� �hh is complex and the dispersion

surface is also complex. The dispersion equation (1) can then be split

up into two equations, one for the real part and one for the imaginary

part. The former is

XorXhr ¼ XoiXhi þ
k2

4
C2
Reð�h� �hhÞ; ð3Þ

where Xor, Xoi and Xhr, Xhi are the real and imaginary parts of Xo and

Xh, respectively. It is the equation of the real part of the dispersion

surface.

If the ratio of the imaginary to the real part of �h is small enough,

equation (3) may be approximated by

XorXhr ¼
k2

4
C2
Reð�h��hhÞ: ð4Þ

As noted by Fukamachi et al. (2002), this is what is done tacitly in

textbooks and reviews (see, for instance, Laue, 1960; Batterman &

Cole, 1964), where it is in fact the real part of the dispersion surface

that is represented.

The direction of propagation of the wavefields is then approxi-

mated by the normal to the real part of the dispersion surface. The

plot of the dispersion surface is very useful, for instance in order to

follow the path of the wavefields inside the crystal. One can thus find

the distribution of wavefields within the Borrmann triangle (Borr-

mann, 1959) or deduce the curved path of wavefields in a slightly

deformed crystal from the displacement of the tiepoint on the

dispersion surface [Penning & Polder (1961) and Kato (1963) in the

Laue geometry; Bonse (1964) and Gronkowski & Malgrange (1984)

in the Bragg geometry]. When approximation (4) does not hold, the

path of the wavefields can no longer be approximated by the normal

to the real part of the dispersion surface in the infinite medium. Ray

tracing is thus not possible in the Bragg geometry if the wavefields

have been generated close to the condition of total reflection or if the

deformations are large enough for interbranch scattering to occur

(Gronkowski & Malgrange, 1984).

4. The dispersion surface in a semi-infinite medium

If the medium is limited by a boundary, the wavefields that actually

propagate in the semi-infinite medium are those that are excited by

the incident wave. They are determined by applying the condition of

the continuity of the tangential component of the wavevectors:

Ko ^ n ¼ KðaÞo ^ n;

where n is a unit vector along the normal pz to the entrance surface

(Figs. 2a and 2c) and KðaÞo is the wavevector of the incident plane wave.

The coordinates of the tiepoint P are obtained by combining this

condition with the dispersion equation (1). In the two-beam

approximation, there are two solutions (see, for example, Authier,

2005):

Xo ¼
kjCj

ffiffiffiffiffiffiffiffiffiffi
�h� �hh

p

2
ffiffiffiffiffiffi
j�j
p Sð�hÞ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ Sð�hÞ

ph i
ð5Þ

Xh ¼
kjCj

ffiffiffiffiffiffi
j�j
p ffiffiffiffiffiffiffiffiffiffi

�h� �hh

p

2
���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ Sð�hÞ

ph i
; ð6Þ

where �o and �h are the direction cosines of pz with respect to the

incident and reflected directions, respectively, Sð�hÞ is sign of �h,

� ¼ �h=�o is the asymmetry ratio and � is the deviation parameter

� ¼
�� sin 2� þ �oð1� �Þ=2

jCj
ffiffiffiffiffiffi
j�j
p ffiffiffiffiffiffiffiffiffiffi

�h� �hh

p

(�� departure from Bragg incidence; �o 000 Fourier coefficient of the

dielectric susceptibility). When the crystal is absorbing, the deviation
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Figure 2
Bragg geometry, non-absorbing crystals. (a), (b) Symmetric reflection; (c), (d)
asymmetric reflection; (a), (c) real space, KðaÞo incident wavevector, KðaÞh reflected
wavevector, KðdÞo transmitted wavevector; (b), (d) reciprocal space, real part of the
dispersion surface. The two solutions of the dispersion surface and the
corresponding paths in direct space are represented in blue and red, respectively.
S0, S00 are Poynting vectors at tiepoints P0 and P00. Tiepoints A1 and A2 correspond
to � ¼ �1 and þ1, respectively. The hatched regions correspond to the total
reflection domain.



parameter is also complex. The actual dispersion surface in the semi-

infinite medium depends on the geometry of the reflection.

4.1. Laue geometry

In the Laue geometry, Sð�hÞ ¼ þ1. Unless the imaginary part of

the dielectric susceptibility is very large, approximation (4) holds, the

real part of the dispersion surface may be approximated by the

infinite medium dispersion surface and the tie-points of the two

excited wavefields lie on branches (1) and (2), respectively. Their

interference, predicted by Ewald in 1917, was first observed for an

incident spherical wave by Kato & Lang (1959) and for an incident

plane wave by Malgrange & Authier (1965).

4.2. Bragg geometry

In the Bragg geometry, Sð�hÞ ¼ �1, and the two solutions of the

dispersion equations, deduced from (5) and (6), are

X 0o ¼ �
kjCj

ffiffiffiffiffiffiffiffiffiffi
�h� �hh

p

2
ffiffiffiffiffiffi
j�j
p �� Sð�rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

ph i

X 0h ¼ �
kjCj

ffiffiffiffiffiffi
j�j
p ffiffiffiffiffiffiffiffiffiffi

�h��hh

p

2
�þ Sð�rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

ph i ð7Þ

X 00o ¼ �
kjCj

ffiffiffiffiffiffiffiffiffiffi
�h��hh

p

2
ffiffiffiffiffiffi
j�j
p �þ Sð�rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

ph i

X 00h ¼ �
kjCj

ffiffiffiffiffiffi
j�j
p ffiffiffiffiffiffiffiffiffiffi

�h��hh

p

2
�� Sð�rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

ph i
:

ð8Þ

If the real part, �r, of the deviation parameter lies within the range

�1 � �r � þ1, the imaginary part of the coordinates Xo and Xh is

large and approximation (4) does not hold; the real part of the

dispersion surface may no longer be approximated by the infinite

medium dispersion surface.

4.2.1. Non-absorbing crystals. The real part of the dispersion

surface is represented in Figs. 2(b) and 2(d) for a symmetric and an

asymmetric reflection, respectively. It consists of two branches,

associated with the two solutions of the dispersion equation, (7) and

(8), respectively: B0A1A2C0 for the wavefields propagating towards

the bottom of the crystal (blue curve) and B00A1A2C00 for the wave-

fields propagating from the bottom of the crystal up towards the

entrance surface (red curve). The latter can only be generated by

back reflection of the former at the bottom of the crystal (Figs. 2a and

2c). When the crystal is thick, one wavefield only propagates inside

the crystal, the path of which was first observed by Authier (1961).

Parts B0A1 and A1B00, C0A2 and A2C00, which do not have corre-

sponding imaginary parts, are exactly superposed on branches 1 and 2

of the infinite medium dispersion surface, respectively. Section A1A2,

which is common to both branches and corresponds to values of the

deviation parameter �1 � � � þ1, is associated with wavefields that

do not exist in the infinite medium but exist in the semi-infinite

medium, which is why the dispersion surface is different in the two

cases. These wavefields appear within the total reflection domain and

are exponentially damped. They do not propagate inside the crystal

but along the surface of the crystal, with a zero cross section and are

evanescent waves (Cowan, 1985). These evanescent waves have been

used by Cowan et al. (1986) to produce standing waves for the study

of the surface of a germanium crystal. Ewald was well aware of this

damped solution when the normal to the crystal surface intercepts the

dispersion surface at complex points and spoke in that case of a

‘mixed solution’ (eine Lösung vom gemischten Typ). He did not,

however, plot the real part of the dispersion surface, and neither did

Laue, but section A1A2 was represented sketchily by Fues (1939) and

the branch of the real part of the dispersion surface corresponding to

wavefields propagating towards the inside of the crystal, B0A1A2C0

(blue curve), was plotted by Kittel (1971) in the non-absorbing

symmetric case.

4.2.2. Absorbing crystals. Real crystals are absorbing and the

whole dispersion surface is complex. Its real part is represented in

Fig. 3, choosing for better visibility a highly absorbing crystal

(symmetric 111 reflection from a GaAs crystal, Mo K� radiation,

linear absorption coefficient 	 = 319.5 cm�1). There is no longer a

total reflection domain and no Bragg gap. Each one of the two

branches can be divided up in three sections, the extreme ones, B0A01,

A02C0, B00A001 and A002C00, lie practically on the infinite medium disper-

sion surface, and the middle ones, A01A02 and A001A002 , replace section

A1A2 of the no-absorption case. The tiepoints A01 and A001 , A02 and A002
correspond to values of �r close to �1 and þ1, respectively. The real

part of the dispersion surface was first calculated by Fukamachi et al.

(1995, 2002) and Yefanov & Kladko (2006).

There are several interesting points to note.

(a) The Bragg-case Pendellösung predicted by Ewald is due to the

interference between wavefields corresponding to different solutions

of the dispersion equation. Their tiepoints P0 and P00 lie on the same

branch of the infinite medium dispersion surface but on different

branches of the real part of the semi-infinite medium dispersion

surface. Bragg-case Pendellösung was first observed for an incident
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Figure 3
Real part of the dispersion surface – Bragg geometry; GaAs, 111 symmetric
reflection, Mo K�. The two solutions of the dispersion equation in the bounded
crystal are represented in blue and red, respectively. The infinite medium dispersion
surface is represented in black. Tiepoints A01, A001 and A02, A002 correspond to values of
�r close to �1 and þ1, respectively.

Figure 4
Variations of the slope of the Poynting vectors of the excited wavefields with the
deviation parameter; GaAs, symmetric 111 reflection, Mo K�; (a) Bragg geometry:
the blue curve corresponds to wavefields propagating towards the inside of the
crystal and the red curve to wavefields propagating from the bottom of the crystal
up; P0 , P00, A01, A001 are the same tiepoints as in Fig. 3; (b) Laue geometry.



plane wave by Batterman & Hildebrandt (1967, 1968) and for an

incident spherical wave by Uragami (1969). Lehmann (1974) has

shown that it differs from Laue-case Pendellösung in that the maxima

of the amplitude oscillations depend on the crystal thickness while

this is not true in the Laue geometry.

(b) Other types of interference such as the Borrmann–Lehmann

fringes (Borrmann & Lehmann, 1962, 1963; Lehmann & Borrmann,

1967; Lang et al., 1986, 1990) occur in the Laue–Bragg geometry when

the Borrmann triangle is partially intercepted by a lateral face. They

are between wavefields having propagated directly and wavefields

that have been partially reflected at the lateral surface, namely

between wavefields corresponding to the same solution of the

dispersion equation. They are not Pendellösung fringes.

(c) The propagation direction of the wavefields can be approxi-

mated by the normal to the real part of the dispersion surface where it

does not differ significantly from the infinite medium dispersion

surface, but not along the segments A01A02 and A001A002 . The variations of

the slope of the Poynting vector across the reflection domain,

calculated from (2), is represented in Fig. 4(a) for the Bragg geometry

and absorbing crystals and, for comparison, in Fig. 4(b) for the Laue

geometry. The slope of the Poynting vector varies continuously from

þ1 (tan � ¼ tan �) to �1 (tan � ¼ � tan �) across the reflection

domain in the Laue geometry (spanning the Borrmann fan) while

there is a gap of forbidden propagation directions in the Bragg

geometry.

5. Concluding remarks

The concept of dispersion surface has been clarified firstly by noting

that, in real absorbing crystals, the dispersion surface is complex, in

both the transmission and the reflection geometries; it may only be

approximated by its real part when its imaginary part is not too large.

Secondly, one should distinguish between the case of the infinite

medium and that of the semi-infinite medium where boundary

conditions have been introduced. For instance, in the Bragg

geometry, there are wavefields which exist within the total reflection

domain but which are forbidden in the infinite medium; for that

reason, the actual dispersion surface in the bounded medium differs

from that in the infinite medium.

The tiepoints of the two wavefields which interfere to produce the

Pendellösung beat effect are associated with different solutions of the

dispersion equation. In the Bragg case, they lie on the same branch of

the infinite medium dispersion surface but on different branches of

the semi-infinite medium dispersion surface.

These considerations are mainly of interest from the viewpoint of

the fundamental dynamical theory and have no real bearing on

practical issues, although they may be useful when discussing

propagation of wavefields in distorted crystals within the total

reflection domain, even if this is usually handled using theories which

do not involve the dispersion surface.

Stimulating remarks by the referees are gratefully acknowledged.
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